(b) $\sqrt{n} \notin \mathbb{Q}$ if *n* is not a perfect square (HINT: write $n = k^2 r$, where *r* does not contain any square factor),

1. . . 1 . . .

If n is not a perfect square, then at least
one of its factors is not a square. So we
can write
$$n=k^2r$$
 where r does not contain
any square factors.

Now, we argue by contradiction. Suppose that n = n + a perfect square and $n \in Q$. Then we can write Jn = p|q, $p, q \in N$, where p and q have no common factors (p|q) is in its simplest form). Then $n = p^{z}/q^{2} = k^{z}r$ or, equivalently, $r = p^{z}$. But this is impossible because $q^{z}k^{z}$ r does not contain square factors. Hence, $n \neq Q$